PHYSICS

1. Which one of the following statements is not true about Newton's second law of motion $\overrightarrow{\mathrm{F}}=\mathrm{ma}$?
(a) The second law of motion is consistent with the first law
(b) The second law of motion is a vector law
(c) The second law of motion is applicable to a single point
particle
(d) The second law of motion is not a local law
2. A bullet of mass 40 g moving with a speed of $90 \mathrm{~m} \mathrm{~s}^{-1}$ enters a heavy wooden block and is stopped after a distance of 60 cm . The average resistive force exerted by the block on the bullet is
(a) 180 N
(b) 220 N (c) 270 N
(d) 320 N
3. A constant force acting on a body of mass of 5 kg change its speed from $5 \mathrm{~m} \mathrm{~s}^{-1}$ to $10 \mathrm{~m} \mathrm{~s}^{-1}$ in 10 s without changing the direction of motion. The force acting on the body is :
(a) 1.5 N
(b) 2 N
(c) 2.5 N
(d) 5 N
4. In the system shown in the figure, the acceleration of 1 kg mass is :

(a) $\frac{\mathrm{g}}{4}$ downwards
(b) $\frac{\mathrm{g}}{2}$ downwards
(c) $\frac{\mathrm{g}}{2}$ upwards
(d) $\frac{g}{4}$ upwards
5. Figure shows the position-time ($x-t$) graph of one dimensional motion of a body of mass 500 g . What is the time interval between two consecutive impulses received by the body?

(a) 2 s
(b) 4 s
(c) 6 s
(d) 8 s
6. A body of mass 0.4 kg starting at origin at $\mathrm{t}=0$ with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x -axis direction is subjected to a constant $\mathrm{F}=8 \mathrm{~N}$
towards negative x -axis. The position of the body after 25 s is :
(a) -6000 m
(b) -8000 m
(c) +4000 m $+7000 \mathrm{~m}$
(d)
7. The position-time graph of a body of mass 2 kg is as shown in figure. What is the impulse on the body at t 4 s ?

(a) $\frac{2}{3} \mathrm{~kg} \mathrm{~m} \mathrm{~s}-1$
(b) $-\frac{2}{3} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(c) $\frac{3}{2} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(d) $-\frac{3}{2} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
8. The figure shows $(x, t),(y, t)$ diagram of a particle moving in 2 -dimensions. If the particle has a mass of 500 g , the force acting on the particle is :

(a)

(b)
(a) 1 N along y -axis
(b) 1 N along x -axis
(c) 0.5 N along x -axis
(d) 0.5 N along y -axis
9. Figure shows the position-time graph of a particle of mass 4 kg . Let the force on the particle for $t<0,0<t<4 s, t F_{2}>4 s$ be F_{1}, and F_{3} respectively. Then:

(a) $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=0$
(b) $\mathrm{F}_{1}>\mathrm{F}_{2}=\mathrm{F}_{3}$
(c) $\mathrm{F}_{1}>\mathrm{F}_{2}>\mathrm{F}_{3}$
(d) $\mathrm{F}_{1}<\mathrm{F}_{2}<\mathrm{F}_{3}$
10. Ten one-rupee coins are put on top of each other on a table. Each coin has a mass m. The reaction of the $6^{\text {th }}$ coin (counted from the bottom) on the $7^{\text {th }}$ coin is :
(a) 4 mg
(b) 6 mg
(c) 7 mg
(d) 3 mg

CHEMISTRY

11. The element californium belongs to the family
(a) Actinide series
(b) Alkali metal family
(c) Alkaline earth family
(d) Lanthanide series
12. An element with atomic number 20 will be placed in which period of the periodic table
(a) 4
(b) 3
(c) 2
(d) 1
13. The electronic structure $(n-1) d^{1-10} n s^{0-2}$ is characteristic of
(a) Transition elements
(b) Lanthanides
(c) Actinides
(d) Rare gases
14. The elements with atomic number $10,18,36,54$ and 86 are all
(a) Light metals
(b) Inert gases
(c) Halogens
(d) Rare-earths
15. An element has the electronic configuration $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{5}, 4 s^{1}$. It is a
(a) s-block element
(b) p-block element
(c) d-block element
(d) Inert gas
16. Which of the following show diagonal relationship
(a) B and $S i$
(b) B and $A l$
(c) B and $G a$
(d) B and C
17. Which pair of elements has same chemical properties
(a) 13,22
(b) 3, 11
(c) 4,24
(d) 2,4
18. Mosley's name is most closely associated with the discovery of
(a) Positron
(b) Deuterons
(c) Atomic number
(d) Atomic weight
19. In the periodic table going down in fluorine group
(a) Reactivity will increase
(b) Electro negativity will increase
(c) Ionic radius will increase
(d) Ionization potential will increase
20. The screening effect of d-elections is
(a) Equal to that of p-electrons
(b) More than that of p-electrons
(c) Same as f-electrons
(d) Less than p-electrons

BIOLOGY

21. Choose the correct option.
(a) Study of internal structure of plant is called anatomy
(b) Plants have cells as the basic unit which are organized into tissues
(c) Tissues are organized into organs
(d) All of the above
22. Angiosperm xylem consists of
(a) Vessels and tracheids only
(b) Triacheids and fibres only
(c) Vessels, tracheids, fibres and parenchyma
(d) Parenchyma and fibres only
23. Choose the incorrect match.
(a) Stomata - Transpiration
(b) Guard cells - Possess chloroplast
(c) Root hairs - Multicellular
(d) Trichomes - Shoot system
24. Radial vascular bundles characteristically occur in
(a) monocot and dicot stems
(b) monocot and dicot leaves
(c) monocot and dicot roots
(d) All of the above
25. Identify type of vascular bundle with respect to A, B and C figure.

(a) A-Conjoint closed, B-Conjoint open, C -Radial
(b) A-Radial, B-Conjoint open, C-Conjoint closed
(c) A-Radial, B-Conjoint closed, C-Conjoint open
(d) A-Conjoint open, B-Conjoint closed, C-Radial
26. Casparian strips occur in
(a) cortex
(b) pericycle
(c) epidermis
(d) endodermis
27. Identify A to E in the given diagram of dicot root.

(a) A-Endodermis, B-Pericycle, C-Protoxylem, D-Metaxylem, E-Pith
(b) A-Endodermis, B-Pericycle, C-Protoxylem, D-Pith E-Metaxylem
(c) A-Endodermis, B-Pericycle, C-Pith, DProtoxylem, E-Metaxylem
(d) A-Endodermis, B-Pith, C-Pericycle, DProtoxylem, E-Metaxylem
28. Choose the correct option for identification of A to D in the given diagram of monocot stem.

(a) A-Hypodermis, B-Xylem, C-Phloem, D-Ground tissue
(b) A-Hypodermis, B-Phloem, C-Xylem, D-Ground tissue
(c) A-Endodermis, B-Phloem, C-Xylem, D-Ground tissue
(d) A-Endodermis, B-Xylem, C-Phloem, E-Ground tissue
29. The vertical section of a dorsiventral leaf through the lamina shows three main parts namely, pidermis, $\ldots A \ldots$ and vascular system. The epidermis, which covers the upper surface is $\ldots B \ldots$ and lower surface is covered by $\ldots C \ldots$ of the leaf.
Choose the correct option to replace A, B and C.
(a) A-mesophyll, B-adaxial epidermis, C -abaxial epidermis
(b) A-endodermis, B-adaxial epidermis, C-abaxial epidermis
(c) A-endodermis, B-abaxial epidermis, C-adaxial epidermis
(d) A-mesophyll, B-abaxial epidermis, C-adaxial epidermis
30. Choose the correct option in the given diagram of TS of dicot leaf to identify A to E.

(a) A-Phloem, B-Xylem, C-Palisade mesophyll, DSpongy mesophyll, E-Stomata
(b) A-Phloem, B-Xylem, C-Palisade mesophyll, DSpongy mesophyll, E-Hydathodes
(c) A-Xylem, B-Phloem, C-Palisade mesophyll, DSpongy mesophyll, E-Stomata
(d) A-Xylem, B-Phloem, C-Palisade mesophyll, D-

Spongy mesophyll, E-Hydathodes

MATHS

21. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
a) no solution
b) two solution
c) three solution
d) None of these
22. The most general solutions of the equation $\sec x-1=(\sqrt{2}-1) \tan x$ are given by
a) $n \pi+\frac{\pi}{8}$
b) $2 n \pi, 2 n \pi+\frac{\pi}{4}$
c) $2 n \pi$
d) None of these
23. The number of solutions of the equation
$3 \sin ^{2} x-7 \sin x+2=0$ in the interval $[0,5 \pi]$ is
(a) 0
(b) 5
(c) 6
(d) 10
24. If $\tan \theta+\tan 2 \theta+\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3}$, then
(a) $\theta=\frac{(6 n+1) \pi}{18}, \forall n \in I$
(b) $\theta=\frac{(6 n+1) \pi}{9}, \forall n \in I$
(c) $\theta=\frac{(3 n+1) \pi}{9}, \forall n \in I$
(d) None of these
25. Thenumber of integral values of k, for which the equation $7 \cos x+5 \sin x=2 k+1$ has a solution is
(a) 4
(b) 8
(c) 10
(d) 12
26. 26. The number of solutions of the equation $|\cos x|=2[x]$, where $[\cdot]$ is the greatest integer, is
a) One
b) Two
c) Infinite
d)nil
1. The equation $\sqrt{3} \sin x+\cos x=4$ has
(a) Only one solution
(b) Two solutions
(c) Infinitely many solutions
s(d) No solution
2. The solution set of $(5+4 \cos \theta)(2 \cos \theta+1)=0$ in the interval $[0,2 \pi]$ is
(a) $\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
(b) $\left\{\frac{\pi}{3}, \pi\right\}$
(c) $\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
(d) $\left\{\frac{2 \pi}{3}, \frac{5 \pi}{3}\right\}$
3. If the x-co-ordinate of a point P on the join of $Q(2$, $2,1)$ and $R(5,1,-2)$ is 4 , then its z-co-ordinate is
(a) 2
(b) 1
(c) -1
(d) -2
4. If centroid of tetrahedron $O A B C$, where A, B, C are given by $(a, 2,3),(1, b, 2)$ and $(2,1, c)$ respectively be $(1,2,-1)$, then distance of $P(a, b$, c) from origin is equal to
(a) $\sqrt{107}$
(b) $\sqrt{14}$
(c) $\sqrt{107 / 14}$
(d) None of these
